std::ranges::construct_at
Defined in header <memory>
|
||
Call signature |
||
template< class T, class... Args > constexpr T* construct_at( T* p, Args&&... args ); |
(since C++20) | |
Creates a T
object initialized with arguments args... at given address p. construct_at
participates in overload resolution only if ::new(std::declval<void*>()) T(std::declval<Args>()...) is well-formed in unevaluated context.
Equivalent to
return ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...);
except that construct_at
may be used in evaluation of constant expressions.
When construct_at
is called in the evaluation of some constant expression e, the argument p must point to either storage obtained by std::allocator<T>::allocate or an object whose lifetime began within the evaluation of e.
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Contents |
Parameters
p | - | pointer to the uninitialized storage on which a T object will be constructed
|
args... | - | arguments used for initialization |
Return value
p
Possible implementation
struct construct_at_fn { template<class T, class...Args> requires requires (void* vp, Args&&... args) { ::new (vp) T(static_cast<Args&&>(args)...); } constexpr T* operator()(T* p, Args&&... args) const { return std::construct_at(p, static_cast<Args&&>(args)...); } }; inline constexpr construct_at_fn construct_at{}; |
Notes
std::ranges::construct_at
behaves exactly same as std::construct_at, except that it is invisible to argument-dependent lookup.
Example
#include <iostream> #include <memory> struct S { int x; float y; double z; S(int x, float y, double z) : x{x}, y{y}, z{z} { std::cout << "S::S();\n"; } ~S() { std::cout << "S::~S();\n"; } void print() const { std::cout << "S { x=" << x << "; y=" << y << "; z=" << z << "; };\n"; } }; int main() { alignas(S) unsigned char buf[sizeof(S)]; S* ptr = std::ranges::construct_at(reinterpret_cast<S*>(buf), 42, 2.71828f, 3.1415); ptr->print(); std::ranges::destroy_at(ptr); }
Output:
S::S(); S { x=42; y=2.71828; z=3.1415; }; S::~S();
Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 3870 | C++20 | construct_at could create objects of a cv-qualified types
|
only cv-unqualified types are permitted |
See also
(C++20) |
destroys an object at a given address (niebloid) |
(C++20) |
creates an object at a given address (function template) |