std::sph_legendre, std::sph_legendref, std::sph_legendrel
double sph_legendre ( unsigned l, unsigned m, double θ ); float sph_legendref( unsigned l, unsigned m, float θ ); |
(1) | (since C++17) |
double sph_legendre ( unsigned l, unsigned m, Integral θ ); |
(2) | (since C++17) |
l
, order m
, and polar angle θ
.Contents |
Parameters
l | - | degree |
m | - | order |
θ | - | polar angle, measured in radians |
Return value
If no errors occur, returns the value of the spherical associated Legendre function (that is, spherical harmonic with ϕ = 0) ofl
, m
, and θ
, where the spherical harmonic function is defined as Yml(θ,ϕ) = (-1)m[(2l+1)(l-m)! |
4π(l+m)! |
Error handling
Errors may be reported as specified in math_errhandling
- If the argument is NaN, NaN is returned and domain error is not reported
- If l>=128, the behavior is implementation-defined
Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of the spherical harmonic function is available in boost.math, and it reduces to this function when called with the parameter phi set to zero.
Example
#include <cmath> #include <iostream> int main() { // spot check for l=3, m=0 double x = 1.2345; std::cout << "Y_3^0(" << x << ") = " << std::sph_legendre(3, 0, x) << '\n'; // exact solution double pi = std::acos(-1); std::cout << "exact solution = " << 0.25*std::sqrt(7/pi)*(5*std::pow(std::cos(x),3)-3*std::cos(x)) << '\n'; }
Output:
Y_3^0(1.2345) = -0.302387 exact solution = -0.302387
External links
Weisstein, Eric W. "Spherical Harmonic." From MathWorld--A Wolfram Web Resource.
See also
(C++17)(C++17)(C++17) |
associated Legendre polynomials (function) |