std::cyl_neumann, std::cyl_neumannf, std::cyl_neumannl
Defined in header <cmath>
|
||
(1) | ||
float cyl_neumann ( float nu, float x ); double cyl_neumann ( double nu, double x ); |
(since C++17) (until C++23) |
|
/* floating-point-type */ cyl_neumann( /* floating-point-type */ nu, /* floating-point-type */ x ); |
(since C++23) | |
float cyl_neumannf( float nu, float x ); |
(2) | (since C++17) |
long double cyl_neumannl( long double nu, long double x ); |
(3) | (since C++17) |
Defined in header <cmath>
|
||
template< class Arithmetic1, class Arithmetic2 > /* common-floating-point-type */ |
(A) | (since C++17) |
std::cyl_neumann
for all cv-unqualified floating-point types as the type of the parameters nu and x.(since C++23)Contents |
Parameters
nu | - | the order of the function |
x | - | the argument of the function |
Return value
If no errors occur, value of the cylindrical Neumann function (Bessel function of the second kind) ofnu
and x
, is returned, that is Nnu(x) = Jnu(x)cos(nuπ)-J-nu(x) |
sin(nuπ) |
Error handling
Errors may be reported as specified in math_errhandling:
- If the argument is NaN, NaN is returned and domain error is not reported.
- If nu≥128, the behavior is implementation-defined.
Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:
|
(until C++23) |
If num1 and num2 have arithmetic types, then std::cyl_neumann(num1, num2) has the same effect as std::cyl_neumann(static_cast</* common-floating-point-type */>(num1), If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided. |
(since C++23) |
Example
#include <cassert> #include <cmath> #include <iostream> #include <numbers> const double π = std::numbers::pi; // or std::acos(-1) in pre C++20 // To calculate the cylindrical Neumann function via cylindrical Bessel function of the // first kind we have to implement J, because the direct invocation of the // std::cyl_bessel_j(nu, x), per formula above, // for negative nu raises 'std::domain_error': Bad argument in __cyl_bessel_j. double J_neg(double nu, double x) { return std::cos(-nu * π) * std::cyl_bessel_j(-nu, x) -std::sin(-nu * π) * std::cyl_neumann(-nu, x); } double J_pos(double nu, double x) { return std::cyl_bessel_j(nu, x); } double J(double nu, double x) { return nu < 0.0 ? J_neg(nu, x) : J_pos(nu, x); } int main() { std::cout << "spot checks for nu == 0.5\n" << std::fixed << std::showpos; const double nu = 0.5; for (double x = 0.0; x <= 2.0; x += 0.333) { const double n = std::cyl_neumann(nu, x); const double j = (J(nu, x) * std::cos(nu * π) - J(-nu, x)) / std::sin(nu * π); std::cout << "N_.5(" << x << ") = " << n << ", calculated via J = " << j << '\n'; assert(n == j); } }
Output:
spot checks for nu == 0.5 N_.5(+0.000000) = -inf, calculated via J = -inf N_.5(+0.333000) = -1.306713, calculated via J = -1.306713 N_.5(+0.666000) = -0.768760, calculated via J = -0.768760 N_.5(+0.999000) = -0.431986, calculated via J = -0.431986 N_.5(+1.332000) = -0.163524, calculated via J = -0.163524 N_.5(+1.665000) = +0.058165, calculated via J = +0.058165 N_.5(+1.998000) = +0.233876, calculated via J = +0.233876
See also
(C++17)(C++17)(C++17) |
regular modified cylindrical Bessel functions (function) |
(C++17)(C++17)(C++17) |
cylindrical Bessel functions (of the first kind) (function) |
(C++17)(C++17)(C++17) |
irregular modified cylindrical Bessel functions (function) |
External links
Weisstein, Eric W. "Bessel Function of the Second Kind." From MathWorld — A Wolfram Web Resource. |