Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/language/virtual"

From cppreference.com
< cpp‎ | language
m (and a bit more comments)
m (+Keywords)
 
(45 intermediate revisions by 21 users not shown)
Line 1: Line 1:
{{title|virtual function specifier}}
+
{{title|{{tt|virtual}} function specifier}}
{{cpp/language/navbar}}
+
{{cpp/language/classes/navbar}}
  
Specifies that a non-static {{rlp|member functions|member function}} is ''virtual'' and supports dynamic binding.
+
The {{c|virtual}} specifier specifies that a non-static {{rlp|member functions|member function}} is ''virtual'' and supports dynamic dispatch. It may only appear in the {{spar|decl-specifier-seq}} of the initial declaration of a non-static member function (i.e., when it is declared in the class definition).
 
+
===Syntax===
+
{{sdsc begin}}
+
{{sdsc | {{ttb|virtual}} {{spar|function_declaration}} {{ttb|;}} }}
+
{{sdsc end}}
+
  
 
===Explanation===
 
===Explanation===
Virtual functions are member functions whose behavior can be overridden in derived classes. As opposed to non-virtual functions, the overridden behavior is preserved even if there is no compile-time information about the actual type of the class. If a derived class is handled using pointer or reference to the base class, a call to a overridden virtual function would invoke the behavior defined in the derived class. This behavior is suppressed if the function is selected using {{rlp|lookup|qualified name lookup}} (that is, if the function's name appears to the right of the scope resolution operator {{tt|::}})
+
Virtual functions are member functions whose behavior can be overridden in derived classes. As opposed to non-virtual functions, the overriding behavior is preserved even if there is no compile-time information about the actual type of the class. That is to say, if a derived class is handled using pointer or reference to the base class, a call to an overridden virtual function would invoke the behavior defined in the derived class. Such a function call is known as ''virtual function call'' or ''virtual call''. Virtual function call is suppressed if the function is selected using {{rlp|lookup|qualified name lookup}} (that is, if the function's name appears to the right of the scope resolution operator {{tt|::}}).
  
 
{{example|code=
 
{{example|code=
 
#include <iostream>
 
#include <iostream>
struct Base {
+
 
  virtual void f() {
+
struct Base
      std::cout << "base\n";
+
{
  }
+
    virtual void f()
 +
    {
 +
        std::cout << "base\n";
 +
    }
 
};
 
};
struct Derived : Base {
+
 
     void f() override { // 'override' is optional
+
struct Derived : Base
 +
{
 +
     void f() override // 'override' is optional
 +
    {
 
         std::cout << "derived\n";
 
         std::cout << "derived\n";
 
     }
 
     }
 
};
 
};
 +
 
int main()
 
int main()
 
{
 
{
Line 31: Line 33:
 
     // virtual function call through reference
 
     // virtual function call through reference
 
     Base& br = b; // the type of br is Base&
 
     Base& br = b; // the type of br is Base&
     Base& dr = d; // the type of dr is Base& as well
+
     Base& dr = d; // the type of dr is Base& as well
 
     br.f(); // prints "base"
 
     br.f(); // prints "base"
 
     dr.f(); // prints "derived"
 
     dr.f(); // prints "derived"
Line 37: Line 39:
 
     // virtual function call through pointer
 
     // virtual function call through pointer
 
     Base* bp = &b; // the type of bp is Base*
 
     Base* bp = &b; // the type of bp is Base*
     Base* dp = &d; // the type of dp is Base* as well
+
     Base* dp = &d; // the type of dp is Base* as well
 
     bp->f(); // prints "base"
 
     bp->f(); // prints "base"
 
     dp->f(); // prints "derived"
 
     dp->f(); // prints "derived"
Line 55: Line 57:
 
Then this function in the class {{tt|Derived}} is also ''virtual'' (whether or not the keyword {{tt|virtual}} is used in its declaration) and ''overrides'' Base::vf (whether or not the word {{tt|override}} is used in its declaration).
 
Then this function in the class {{tt|Derived}} is also ''virtual'' (whether or not the keyword {{tt|virtual}} is used in its declaration) and ''overrides'' Base::vf (whether or not the word {{tt|override}} is used in its declaration).
  
{{tt|Base::vf}} does not need to be visible (can be declared private, or inherited using private inheritance) to be overridden.
+
{{tt|Base::vf}} does not need to be accessible or visible to be overridden. ({{tt|Base::vf}} can be declared private, or {{tt|Base}} can be inherited using private inheritance. Any members with the same name in a base class of {{tt|Derived}} which inherits {{tt|Base}} do not matter for override determination, even if they would hide {{tt|Base::vf}} during name lookup.)
  
 
{{source|1=
 
{{source|1=
class B {
+
class B
 +
{
 
     virtual void do_f(); // private member
 
     virtual void do_f(); // private member
public:
+
public:
     void f(); // public interface
+
     void f() { do_f(); } // public interface
 
};
 
};
struct D : public B {
+
 
     void do_f() override; // overrides B::f
+
struct D : public B
 +
{
 +
     void do_f() override; // overrides B::do_f
 
};
 
};
  
Line 71: Line 76:
 
     D d;
 
     D d;
 
     B* bp = &d;
 
     B* bp = &d;
     bp->f(); // calls D::do_f();
+
     bp->f(); // internally calls D::do_f();
 
}
 
}
 
}}
 
}}
  
For every virtual function, there is the ''final overrider'', which is executed when a virtual function call is made. A virtual member function {{tt|vf}} of a base class {{tt|Base}} is the final overrider unless the derived class declares or inherits another function that overrides {{tt|vf}}.
+
For every virtual function, there is the ''final overrider'', which is executed when a virtual function call is made. A virtual member function {{tt|vf}} of a base class {{tt|Base}} is the final overrider unless the derived class declares or inherits (through multiple inheritance) another function that overrides {{tt|vf}}.
  
 
{{source|1=
 
{{source|1=
struct A {
+
struct A { virtual void f(); };     // A::f is virtual
     virtual void f();
+
struct B : A { void f(); };        // B::f overrides A::f in B
 +
struct C : virtual B { void f(); }; // C::f overrides A::f in C
 +
 
 +
struct D : virtual B {}; // D does not introduce an overrider, B::f is final in D
 +
 
 +
struct E : C, D          // E does not introduce an overrider, C::f is final in E
 +
{
 +
    using A::f; // not a function declaration, just makes A::f visible to lookup
 
};
 
};
struct B : A {
+
 
    void f(); // B::f overrides A::f (final overrider)
+
int main()
};
+
{
struct C : B  {
+
     E e;
     using A::f; // C::f is not an overrider
+
    e.f();    // virtual call calls C::f, the final overrider in e
};
+
    e.E::f(); // non-virtual call calls A::f, which is visible in E
int main() {
+
  C c;
+
  c.f();    // virtual call calls B::f, the final overrider
+
  c.C::f(); // non-virtual call calls A::f, which is visible in C
+
 
}
 
}
 
}}
 
}}
Line 96: Line 104:
 
If a function has more than one final overrider, the program is ill-formed:
 
If a function has more than one final overrider, the program is ill-formed:
 
{{source|1=
 
{{source|1=
struct A {
+
struct A
 +
{
 
     virtual void f();
 
     virtual void f();
 
};
 
};
struct VB1 : virtual A {
+
 
 +
struct VB1 : virtual A
 +
{
 
     void f(); // overrides A::f
 
     void f(); // overrides A::f
 
};
 
};
struct VB2 : virtual A {
+
 
 +
struct VB2 : virtual A
 +
{
 
     void f(); // overrides A::f
 
     void f(); // overrides A::f
 
};
 
};
// struct Error : VB1, VB2 {
+
 
 +
// struct Error : VB1, VB2
 +
// {
 
//    // Error: A::f has two final overriders in Error
 
//    // Error: A::f has two final overriders in Error
 
// };
 
// };
struct Okay : VB1, VB2 {
+
 
 +
struct Okay : VB1, VB2
 +
{
 
     void f(); // OK: this is the final overrider for A::f
 
     void f(); // OK: this is the final overrider for A::f
 
};
 
};
 +
 
struct VB1a : virtual A {}; // does not declare an overrider
 
struct VB1a : virtual A {}; // does not declare an overrider
struct Da : VB1a, VB2 {
+
 
 +
struct Da : VB1a, VB2
 +
{
 
     // in Da, the final overrider of A::f is VB2::f
 
     // in Da, the final overrider of A::f is VB2::f
 
};
 
};
Line 120: Line 140:
  
 
{{source|1=
 
{{source|1=
struct B {
+
struct B
 +
{
 
     virtual void f();
 
     virtual void f();
 
};
 
};
struct D : B {
+
 
 +
struct D : B
 +
{
 
     void f(int); // D::f hides B::f (wrong parameter list)
 
     void f(int); // D::f hides B::f (wrong parameter list)
 
};
 
};
struct D2 : D {
+
 
 +
struct D2 : D
 +
{
 
     void f(); // D2::f overrides B::f (doesn't matter that it's not visible)
 
     void f(); // D2::f overrides B::f (doesn't matter that it's not visible)
 
};
 
};
Line 132: Line 157:
 
int main()
 
int main()
 
{
 
{
     B b;   B& b_as_b   = b;
+
     B b;
     D d;   B& d_as_b   = d;   D& d_as_d = d;
+
    B& b_as_b = b;
     D2 d2; B& d2_as_b = d2;   D& d2_as_d = d2;
+
   
 
+
     D d;
     b_as_b.f(); // calls B::f()
+
    B& d_as_b = d;
     d_as_b.f(); // calls B::f()
+
    D& d_as_d = d;
 +
   
 +
     D2 d2;
 +
    B& d2_as_b = d2;
 +
    D& d2_as_d = d2;
 +
   
 +
     b_as_b.f(); // calls B::f()
 +
     d_as_b.f(); // calls B::f()
 
     d2_as_b.f(); // calls D2::f()
 
     d2_as_b.f(); // calls D2::f()
 
+
   
     d_as_d.f(); // Error: lookup in D finds only f(int)
+
     d_as_d.f(); // Error: lookup in D finds only f(int)
 
     d2_as_d.f(); // Error: lookup in D finds only f(int)
 
     d2_as_d.f(); // Error: lookup in D finds only f(int)
 
}
 
}
Line 149: Line 181:
 
If a function is declared with the specifier {{tt|override}}, but does not override a virtual function, the program is ill-formed:
 
If a function is declared with the specifier {{tt|override}}, but does not override a virtual function, the program is ill-formed:
 
{{source|1=
 
{{source|1=
struct B {
+
struct B
 +
{
 
     virtual void f(int);
 
     virtual void f(int);
 
};
 
};
struct D : B {
+
 
     virtual void f(int) override; // OK, D::f(int) overrides B::f(int)
+
struct D : B
     virtual void f(long) override; // Error: f(long) does not override B(int)
+
{
 +
     virtual void f(int) override; // OK, D::f(int) overrides B::f(int)
 +
     virtual void f(long) override; // Error: f(long) does not override B::f(int)
 
};
 
};
 
}}
 
}}
  
If a function is declared with the specifier {{tt|final}}, and another function attempts to override it, the program is ill-formed
+
If a function is declared with the specifier {{tt|final}}, and another function attempts to override it, the program is ill-formed:
 
{{source|1=
 
{{source|1=
struct B {
+
struct B
 +
{
 
     virtual void f() const final;
 
     virtual void f() const final;
 
};
 
};
struct D : B {
+
 
 +
struct D : B
 +
{
 
     void f() const; // Error: D::f attempts to override final B::f
 
     void f() const; // Error: D::f attempts to override final B::f
 
};
 
};
Line 172: Line 210:
 
Non-member functions and static member functions cannot be virtual.
 
Non-member functions and static member functions cannot be virtual.
  
Functions templates cannot be declared {{tt|virtual}}. This applies only to functions that are themselves templates - a regular member function of a class template can be declared virtual.
+
Function templates cannot be declared {{tt|virtual}}. This applies only to functions that are themselves templates - a regular member function of a class template can be declared virtual.
 +
 
 +
{{rrev|since=c++20|
 +
Virtual functions (whether declared virtual or overriding one) cannot have any associated constraints.
 +
{{source|1=
 +
struct A
 +
{
 +
    virtual void f() requires true; // Error: constrained virtual function
 +
};
 +
}}
 +
 
 +
A {{rlpt|consteval}} virtual function must not override or be overidden by a non-{{tt|consteval}} virtual function.
 +
}}
 +
 
 +
{{rlp|default arguments|Default arguments}} for virtual functions are substituted at the compile time.
  
 
====Covariant return types====
 
====Covariant return types====
Line 178: Line 230:
  
 
* both types are pointers or references (lvalue or rvalue) to classes. Multi-level pointers or references are not allowed.
 
* both types are pointers or references (lvalue or rvalue) to classes. Multi-level pointers or references are not allowed.
* the referenced/pointed-to class in the return type of {{tt|Base::f()}} must be a unambiguous and accessible direct or indirect base class of the referenced/pointed-to class of the return type of {{tt|Derived::f()}}.
+
* the referenced/pointed-to class in the return type of {{tt|Base::f()}} must be an unambiguous and accessible direct or indirect base class of the referenced/pointed-to class of the return type of {{tt|Derived::f()}}.
 
* the return type of {{tt|Derived::f()}} must be equally or less [[cpp/language/cv | cv-qualified]] than the return type of {{tt|Base::f()}}.
 
* the return type of {{tt|Derived::f()}} must be equally or less [[cpp/language/cv | cv-qualified]] than the return type of {{tt|Base::f()}}.
  
Line 188: Line 240:
 
class B {};
 
class B {};
  
struct Base {
+
struct Base
 +
{
 
     virtual void vf1();
 
     virtual void vf1();
 
     virtual void vf2();
 
     virtual void vf2();
Line 196: Line 249:
 
};
 
};
  
class D : private B {
+
class D : private B
 +
{
 
     friend struct Derived; // in Derived, B is an accessible base of D
 
     friend struct Derived; // in Derived, B is an accessible base of D
 
};
 
};
Line 202: Line 256:
 
class A; // forward-declared class is an incomplete type
 
class A; // forward-declared class is an incomplete type
  
struct Derived : public Base {
+
struct Derived : public Base
 +
{
 
     void vf1();    // virtual, overrides Base::vf1()
 
     void vf1();    // virtual, overrides Base::vf1()
 
     void vf2(int); // non-virtual, hides Base::vf2()
 
     void vf2(int); // non-virtual, hides Base::vf2()
Line 221: Line 276:
 
//  dr.vf2(); // Error: vf2(int) hides vf2()
 
//  dr.vf2(); // Error: vf2(int) hides vf2()
  
     B* p = br.vf4(); // calls Derived::pf() and converts the result to B*
+
     B* p = br.vf4(); // calls Derived::vf4() and converts the result to B*
     D* q = dr.vf4(); // calls Derived::pf() and does not convert
+
     D* q = dr.vf4(); // calls Derived::vf4() and does not convert the result to B*
                    //  the result to B*
+
 
+
 
}
 
}
 
}}
 
}}
  
 
====Virtual destructor====
 
====Virtual destructor====
Even though destructors are not inherited, if a base class declares its destructor {{tt|virtual}}, the derived destructor always overrides it. This makes it possible to delete dynamically allocated objects of polymorphic type through pointers to base
+
Even though destructors are not inherited, if a base class declares its destructor {{tt|virtual}}, the derived destructor always overrides it. This makes it possible to delete dynamically allocated objects of polymorphic type through pointers to base.
  
 
{{source|1=
 
{{source|1=
class Base {
+
class Base
public:
+
{
 +
public:
 
     virtual ~Base() { /* releases Base's resources */ }
 
     virtual ~Base() { /* releases Base's resources */ }
 
};
 
};
  
class Derived : public Base {
+
class Derived : public Base
 +
{
 
     ~Derived() { /* releases Derived's resources */ }
 
     ~Derived() { /* releases Derived's resources */ }
 
};
 
};
Line 251: Line 306:
 
}}
 
}}
  
Moreover, if a class is ''polymorphic'' (declares or inherits at least one virtual function), and its destructor is not virtual, deleting it is ''undefined behavior'' regardless of whether there are resources that would be leaked if the derived destructor is not invoked.
+
Moreover, if the destructor of the base class is not virtual, deleting a derived class object through a pointer to the base class is ''undefined behavior'' regardless of whether there are resources that would be leaked if the derived destructor is not invoked{{rev inl|since=c++20|, unless the selected deallocation function is a destroying {{lc|operator delete}}}}.
  
A useful guideline is that the destructor of any base class must be [http://www.gotw.ca/publications/mill18.htm public and virtual or protected and non-virtual].
+
A useful guideline is that the destructor of any base class must be [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-dtor-virtual public and virtual or protected and non-virtual], whenever delete expressions are involved{{rev inl|since=c++11|, e.g. when implicitly used in {{lc|std::unique_ptr}}}}.
  
 
===During construction and destruction===
 
===During construction and destruction===
Line 263: Line 318:
  
 
{{source|1=
 
{{source|1=
struct V {
+
struct V
 +
{
 
     virtual void f();
 
     virtual void f();
 
     virtual void g();
 
     virtual void g();
 
};
 
};
  
struct A : virtual V {
+
struct A : virtual V
 +
{
 
     virtual void f(); // A::f is the final overrider of V::f in A
 
     virtual void f(); // A::f is the final overrider of V::f in A
 
};
 
};
struct B : virtual V {
+
 
     virtual void g(); // B::g is the final overrider of V::f in B
+
struct B : virtual V
 +
{
 +
     virtual void g(); // B::g is the final overrider of V::g in B
 
     B(V*, A*);
 
     B(V*, A*);
 
};
 
};
struct D : A, B {
+
 
 +
struct D : A, B
 +
{
 
     virtual void f(); // D::f is the final overrider of V::f in D
 
     virtual void f(); // D::f is the final overrider of V::f in D
     virtual void g(); // D::g is the final overrider of V::f in D
+
     virtual void g(); // D::g is the final overrider of V::g in D
  
 
     // note: A is initialized before B
 
     // note: A is initialized before B
     D() : B((A*)this, this)  
+
     D() : B((A*) this, this) {}
    {
+
    }
+
 
};
 
};
  
Line 295: Line 354:
 
     a->f(); // a’s type A is not a base of B. it belongs to a different branch of the
 
     a->f(); // a’s type A is not a base of B. it belongs to a different branch of the
 
             // hierarchy. Attempting a virtual call through that branch causes
 
             // hierarchy. Attempting a virtual call through that branch causes
             // undefined behavior even though A was already fully constructed in this case
+
             // undefined behavior even though A was already fully constructed in this
             // (it was constructed before B since it appears before B in the list of the
+
             // case (it was constructed before B since it appears before B in the list
             // bases of D). In practice, the virtual call to A::f will be attempted
+
             // of the bases of D). In practice, the virtual call to A::f will be
             // using B's virtual member function table, since that's what is active
+
             // attempted using B's virtual member function table, since that's what
             // during B's construction)
+
             // is active during B's construction)
 
}
 
}
 
}}
 
}}
 +
 +
===Keywords===
 +
{{ltt|cpp/keyword/virtual}}
 +
 +
===Defect reports===
 +
{{dr list begin}}
 +
{{dr list item|wg=cwg|dr=258|std=C++98|before=a non-const member function of a derived class might become<br>virtual because of a const virtual member function of its base|after=virtuality also require cv-<br>qualifications to be the same}}
 +
{{dr list item|wg=cwg|dr=477|std=C++98|before=a friend declaration could contain the {{c|virtual}} specifier|after=not allowed}}
 +
{{dr list item|wg=cwg|dr=1516|std=C++98|before=the definition of the terms "virtual function call"<br>and "virtual call" were not provided|after=provided}}
 +
{{dr list end}}
  
 
===See also===
 
===See also===
* [[cpp/language/override | override specifier]] {{mark since c++11}}
+
{{dsc begin}}
* [[cpp/language/final | final specifier]] {{mark since c++11}}
+
{{dsc|{{rlp|derived class|derived classes and modes of inheritance}}}}
 +
{{dsc inc|cpp/language/dsc override}}
 +
{{dsc inc|cpp/language/dsc final}}
 +
{{dsc end}}
  
[[de:cpp/language/virtual]]
+
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}
[[es:cpp/language/virtual]]
+
[[fr:cpp/language/virtual]]
+
[[it:cpp/language/virtual]]
+
[[ja:cpp/language/virtual]]
+
[[pt:cpp/language/virtual]]
+
[[ru:cpp/language/virtual]]
+
[[zh:cpp/language/virtual]]
+

Latest revision as of 22:21, 11 August 2024

 
 
C++ language
General topics
Flow control
Conditional execution statements
if
Iteration statements (loops)
for
range-for (C++11)
Jump statements
Functions
Function declaration
Lambda function expression
inline specifier
Dynamic exception specifications (until C++17*)
noexcept specifier (C++11)
Exceptions
Namespaces
Types
Specifiers
const/volatile
decltype (C++11)
auto (C++11)
constexpr (C++11)
consteval (C++20)
constinit (C++20)
Storage duration specifiers
Initialization
Expressions
Alternative representations
Literals
Boolean - Integer - Floating-point
Character - String - nullptr (C++11)
User-defined (C++11)
Utilities
Attributes (C++11)
Types
typedef declaration
Type alias declaration (C++11)
Casts
Memory allocation
Classes
Class-specific function properties
Virtual function
override specifier (C++11)  
final specifier (C++11)
explicit (C++11)
static

Special member functions
Templates
Miscellaneous
 
 

The virtual specifier specifies that a non-static member function is virtual and supports dynamic dispatch. It may only appear in the decl-specifier-seq of the initial declaration of a non-static member function (i.e., when it is declared in the class definition).

Contents

[edit] Explanation

Virtual functions are member functions whose behavior can be overridden in derived classes. As opposed to non-virtual functions, the overriding behavior is preserved even if there is no compile-time information about the actual type of the class. That is to say, if a derived class is handled using pointer or reference to the base class, a call to an overridden virtual function would invoke the behavior defined in the derived class. Such a function call is known as virtual function call or virtual call. Virtual function call is suppressed if the function is selected using qualified name lookup (that is, if the function's name appears to the right of the scope resolution operator ::).

#include <iostream>
 
struct Base
{
    virtual void f()
    {
        std::cout << "base\n";
    }
};
 
struct Derived : Base
{
    void f() override // 'override' is optional
    {
        std::cout << "derived\n";
    }
};
 
int main()
{
    Base b;
    Derived d;
 
    // virtual function call through reference
    Base& br = b; // the type of br is Base&
    Base& dr = d; // the type of dr is Base& as well
    br.f(); // prints "base"
    dr.f(); // prints "derived"
 
    // virtual function call through pointer
    Base* bp = &b; // the type of bp is Base*
    Base* dp = &d; // the type of dp is Base* as well
    bp->f(); // prints "base"
    dp->f(); // prints "derived"
 
    // non-virtual function call
    br.Base::f(); // prints "base"
    dr.Base::f(); // prints "base"
}

[edit] In detail

If some member function vf is declared as virtual in a class Base, and some class Derived, which is derived, directly or indirectly, from Base, has a declaration for member function with the same

  • name
  • parameter type list (but not the return type)
  • cv-qualifiers
  • ref-qualifiers

Then this function in the class Derived is also virtual (whether or not the keyword virtual is used in its declaration) and overrides Base::vf (whether or not the word override is used in its declaration).

Base::vf does not need to be accessible or visible to be overridden. (Base::vf can be declared private, or Base can be inherited using private inheritance. Any members with the same name in a base class of Derived which inherits Base do not matter for override determination, even if they would hide Base::vf during name lookup.)

class B
{
    virtual void do_f(); // private member
public:
    void f() { do_f(); } // public interface
};
 
struct D : public B
{
    void do_f() override; // overrides B::do_f
};
 
int main()
{
    D d;
    B* bp = &d;
    bp->f(); // internally calls D::do_f();
}

For every virtual function, there is the final overrider, which is executed when a virtual function call is made. A virtual member function vf of a base class Base is the final overrider unless the derived class declares or inherits (through multiple inheritance) another function that overrides vf.

struct A { virtual void f(); };     // A::f is virtual
struct B : A { void f(); };         // B::f overrides A::f in B
struct C : virtual B { void f(); }; // C::f overrides A::f in C
 
struct D : virtual B {}; // D does not introduce an overrider, B::f is final in D
 
struct E : C, D          // E does not introduce an overrider, C::f is final in E
{
    using A::f; // not a function declaration, just makes A::f visible to lookup
};
 
int main()
{
    E e;
    e.f();    // virtual call calls C::f, the final overrider in e
    e.E::f(); // non-virtual call calls A::f, which is visible in E
}

If a function has more than one final overrider, the program is ill-formed:

struct A
{
    virtual void f();
};
 
struct VB1 : virtual A
{
    void f(); // overrides A::f
};
 
struct VB2 : virtual A
{
    void f(); // overrides A::f
};
 
// struct Error : VB1, VB2
// {
//     // Error: A::f has two final overriders in Error
// };
 
struct Okay : VB1, VB2
{
    void f(); // OK: this is the final overrider for A::f
};
 
struct VB1a : virtual A {}; // does not declare an overrider
 
struct Da : VB1a, VB2
{
    // in Da, the final overrider of A::f is VB2::f
};

A function with the same name but different parameter list does not override the base function of the same name, but hides it: when unqualified name lookup examines the scope of the derived class, the lookup finds the declaration and does not examine the base class.

struct B
{
    virtual void f();
};
 
struct D : B
{
    void f(int); // D::f hides B::f (wrong parameter list)
};
 
struct D2 : D
{
    void f(); // D2::f overrides B::f (doesn't matter that it's not visible)
};
 
int main()
{
    B b;
    B& b_as_b = b;
 
    D d;
    B& d_as_b = d;
    D& d_as_d = d;
 
    D2 d2;
    B& d2_as_b = d2;
    D& d2_as_d = d2;
 
    b_as_b.f();  // calls B::f()
    d_as_b.f();  // calls B::f()
    d2_as_b.f(); // calls D2::f()
 
    d_as_d.f();  // Error: lookup in D finds only f(int)
    d2_as_d.f(); // Error: lookup in D finds only f(int)
}

If a function is declared with the specifier override, but does not override a virtual function, the program is ill-formed:

struct B
{
    virtual void f(int);
};
 
struct D : B
{
    virtual void f(int) override;  // OK, D::f(int) overrides B::f(int)
    virtual void f(long) override; // Error: f(long) does not override B::f(int)
};

If a function is declared with the specifier final, and another function attempts to override it, the program is ill-formed:

struct B
{
    virtual void f() const final;
};
 
struct D : B
{
    void f() const; // Error: D::f attempts to override final B::f
};
(since C++11)

Non-member functions and static member functions cannot be virtual.

Function templates cannot be declared virtual. This applies only to functions that are themselves templates - a regular member function of a class template can be declared virtual.

Virtual functions (whether declared virtual or overriding one) cannot have any associated constraints.

struct A
{
    virtual void f() requires true; // Error: constrained virtual function
};

A consteval virtual function must not override or be overidden by a non-consteval virtual function.

(since C++20)

Default arguments for virtual functions are substituted at the compile time.

[edit] Covariant return types

If the function Derived::f overrides a function Base::f, their return types must either be the same or be covariant. Two types are covariant if they satisfy all of the following requirements:

  • both types are pointers or references (lvalue or rvalue) to classes. Multi-level pointers or references are not allowed.
  • the referenced/pointed-to class in the return type of Base::f() must be an unambiguous and accessible direct or indirect base class of the referenced/pointed-to class of the return type of Derived::f().
  • the return type of Derived::f() must be equally or less cv-qualified than the return type of Base::f().

The class in the return type of Derived::f must be either Derived itself, or must be a complete type at the point of declaration of Derived::f.

When a virtual function call is made, the type returned by the final overrider is implicitly converted to the return type of the overridden function that was called:

class B {};
 
struct Base
{
    virtual void vf1();
    virtual void vf2();
    virtual void vf3();
    virtual B* vf4();
    virtual B* vf5();
};
 
class D : private B
{
    friend struct Derived; // in Derived, B is an accessible base of D
};
 
class A; // forward-declared class is an incomplete type
 
struct Derived : public Base
{
    void vf1();    // virtual, overrides Base::vf1()
    void vf2(int); // non-virtual, hides Base::vf2()
//  char vf3();    // Error: overrides Base::vf3, but has different
                   // and non-covariant return type
    D* vf4();      // overrides Base::vf4() and has covariant return type
//  A* vf5();      // Error: A is incomplete type
};
 
int main()
{
    Derived d;
    Base& br = d;
    Derived& dr = d;
 
    br.vf1(); // calls Derived::vf1()
    br.vf2(); // calls Base::vf2()
//  dr.vf2(); // Error: vf2(int) hides vf2()
 
    B* p = br.vf4(); // calls Derived::vf4() and converts the result to B*
    D* q = dr.vf4(); // calls Derived::vf4() and does not convert the result to B*
}

[edit] Virtual destructor

Even though destructors are not inherited, if a base class declares its destructor virtual, the derived destructor always overrides it. This makes it possible to delete dynamically allocated objects of polymorphic type through pointers to base.

class Base
{
public:
    virtual ~Base() { /* releases Base's resources */ }
};
 
class Derived : public Base
{
    ~Derived() { /* releases Derived's resources */ }
};
 
int main()
{
    Base* b = new Derived;
    delete b; // Makes a virtual function call to Base::~Base()
              // since it is virtual, it calls Derived::~Derived() which can
              // release resources of the derived class, and then calls
              // Base::~Base() following the usual order of destruction
}

Moreover, if the destructor of the base class is not virtual, deleting a derived class object through a pointer to the base class is undefined behavior regardless of whether there are resources that would be leaked if the derived destructor is not invoked, unless the selected deallocation function is a destroying operator delete(since C++20).

A useful guideline is that the destructor of any base class must be public and virtual or protected and non-virtual, whenever delete expressions are involved, e.g. when implicitly used in std::unique_ptr(since C++11).

[edit] During construction and destruction

When a virtual function is called directly or indirectly from a constructor or from a destructor (including during the construction or destruction of the class’s non-static data members, e.g. in a member initializer list), and the object to which the call applies is the object under construction or destruction, the function called is the final overrider in the constructor’s or destructor’s class and not one overriding it in a more-derived class. In other words, during construction or destruction, the more-derived classes do not exist.

When constructing a complex class with multiple branches, within a constructor that belongs to one branch, polymorphism is restricted to that class and its bases: if it obtains a pointer or reference to a base subobject outside this subhierarchy, and attempts to invoke a virtual function call (e.g. using explicit member access), the behavior is undefined:

struct V
{
    virtual void f();
    virtual void g();
};
 
struct A : virtual V
{
    virtual void f(); // A::f is the final overrider of V::f in A
};
 
struct B : virtual V
{
    virtual void g(); // B::g is the final overrider of V::g in B
    B(V*, A*);
};
 
struct D : A, B
{
    virtual void f(); // D::f is the final overrider of V::f in D
    virtual void g(); // D::g is the final overrider of V::g in D
 
    // note: A is initialized before B
    D() : B((A*) this, this) {}
};
 
// the constructor of B, called from the constructor of D 
B::B(V* v, A* a)
{
    f(); // virtual call to V::f (although D has the final overrider, D doesn't exist)
    g(); // virtual call to B::g, which is the final overrider in B 
 
    v->g(); // v's type V is base of B, virtual call calls B::g as before
 
    a->f(); // a’s type A is not a base of B. it belongs to a different branch of the
            // hierarchy. Attempting a virtual call through that branch causes
            // undefined behavior even though A was already fully constructed in this
            // case (it was constructed before B since it appears before B in the list
            // of the bases of D). In practice, the virtual call to A::f will be
            // attempted using B's virtual member function table, since that's what
            // is active during B's construction)
}

[edit] Keywords

virtual

[edit] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
CWG 258 C++98 a non-const member function of a derived class might become
virtual because of a const virtual member function of its base
virtuality also require cv-
qualifications to be the same
CWG 477 C++98 a friend declaration could contain the virtual specifier not allowed
CWG 1516 C++98 the definition of the terms "virtual function call"
and "virtual call" were not provided
provided

[edit] See also

derived classes and modes of inheritance
override specifier(C++11) explicitly declares that a method overrides another method [edit]
final specifier(C++11) declares that a method cannot be overridden [edit]