Namespaces
Variants
Views
Actions

cv (const and volatility) type qualifiers

From cppreference.com
< cpp‎ | language
Revision as of 12:31, 19 November 2014 by Cubbi (Talk | contribs)

 
 
C++ language
General topics
Flow control
Conditional execution statements
if
Iteration statements (loops)
for
range-for (C++11)
Jump statements
Functions
Function declaration
Lambda function expression
inline specifier
Dynamic exception specifications (until C++17*)
noexcept specifier (C++11)
Exceptions
Namespaces
Types
Specifiers
const/volatile
decltype (C++11)
auto (C++11)
constexpr (C++11)
consteval (C++20)
constinit (C++20)
Storage duration specifiers
Initialization
Expressions
Alternative representations
Literals
Boolean - Integer - Floating-point
Character - String - nullptr (C++11)
User-defined (C++11)
Utilities
Attributes (C++11)
Types
typedef declaration
Type alias declaration (C++11)
Casts
Memory allocation
Classes
Class-specific function properties
explicit (C++11)
static

Special member functions
Templates
Miscellaneous
 
 

Appear in any type specifier, including decl-specifier-seq of declaration grammar, to specify constness or volatility of the object being declared or of the type being named.

  • const - defines that the type is constant.
  • volatile - defines that the type is volatile.
  • mutable - defines that a member of a class does not affect the externally visible state of the class. mutable members of const classes are modifiable.

Explanation

For any type T (including incomplete types), other than function type or reference type, there are three more distinct types in the C++ type system: const-qualified T, volatile-qualified T, and const-volatile-qualified T.

Note: array types are considered to have the same cv-qualification as their element types.

When an object is first created, the cv-qualifiers used (which could be part of decl-specifier-seq or part of a declarator in a declaration, or part of type-id in a new-expression) determine the constness or volatility of the object, as follows:

  • const object - an object whose type is const-qualified, or a non-mutable subobject of a const object. Such object cannot be modified: attempt to do so directly is a compile-time error, and attempt to do so indirectly (e.g., by modifying the const object through a reference or pointer to non-const type) results in undefined behavior.
  • volatile object - an object whose type is volatile-qualified, or a subobject of a volatile object, or a mutable subobject of a const-volatile object. Every access (read or write operation, member function call, etc.) on the volatile object is treated as a visible side-effect for the purposes of optimization (that is, within a single thread of execution, volatile accesses cannot be reordered or optimized out. This makes volatile objects suitable for communication with a signal handler, but not with another thread of execution, see std::memory_order). Any attempt to refer to a volatile object through a non-volatile glvalue (e.g. through a reference or pointer to non-volatile type) results in undefined behavior.
  • const volatile object - an object whose type is const-volatile-qualified, a non-mutable subobject of a const volatile object, a const subobject of a volatile object, or a non-mutable volatile subobject of a const object. Behaves as both a const object and as a volatile object.

There is partial ordering of cv-qualifiers by the order of increasing restrictions. The type can be said more or less cv-qualified then:

  • unqualified < const
  • unqualified < volatile
  • unqualified < const volatile
  • const < const volatile
  • volatile < const volatile

References and pointers to cv-qualified types may be implicitly converted to references and pointers to more cv-qualified types. In particular, the following conversions are allowed:

  • reference/pointer to unqualified type can be converted to reference/pointer to const
  • reference/pointer to unqualified type can be converted to reference/pointer to volatile
  • reference/pointer to unqualified type can be converted to reference/pointer to const volatile
  • reference/pointer to const type can be converted to reference/pointer to const volatile
  • reference/pointer to volatile type can be converted to reference/pointer to const volatile
Note: additional restrictions are imposed on multi-level pointers.

To convert a reference or a pointer to a cv-qualified type to a reference or pointer to a less cv-qualified type, const_cast must be used.

Keywords

const, volatile, mutable

Example

int main()
{
    int n1 = 0;           // non-const object
    const int n2 = 0;     // const object
    int const n3 = 0;     // const object (same as n2)
    volatile int n4 = 0;  // volatile object
    const struct X {
        int n1;
        mutable int n2;
    } x = {0, 0};      // const object with mutable member
 
    n1 = 1; // ok, modifiable obejct
//  n2 = 2; // error: non-modifiable object
    n4 = 3; // ok, treated as a side-effect.
//  x.n1 = 4; // error: member of a const object is const
    x.n2 = 4; // ok, mutable member of a const object isn't const
 
    const int& r1 = n1; // reference to const bound to non-const object
//  r1 = 2; // error: attempt to modify through reference to const
    const_cast<int&>(r1) = 2; // ok, modifies n1
 
    const int& r2 = n2; // reference to const bound to const object
//  r2 = 2; // error: attempt to modify through reference to const
//  const_cast<int&>(r2) = 2; // undefined behavior: attempt to modify const object
}

Output:

# typical machine code produced on an x86_64 platform
# (only the code that contributes to observable side-effects is emitted)
main:
    movl    $0, -4(%rsp) # volatile int n4 = 0;
    movl    $3, -4(%rsp) # n4 = 3;
    xorl    %eax, %eax   # return 0 (implicit)
    ret