std::is_base_of
Defined in header <type_traits>
|
||
template< class Base, class Derived > struct is_base_of; |
(since C++11) | |
std::is_base_of
is a BinaryTypeTrait.
If Derived
is derived from Base
or if both are the same non-union class (in both cases ignoring cv-qualification), provides the member constant value equal to true. Otherwise value is false.
If both Base
and Derived
are non-union class types, and they are not the same type (ignoring cv-qualification), Derived
should be a complete type; otherwise the behavior is undefined.
If the program adds specializations for std::is_base_of
or std::is_base_of_v
(since C++17), the behavior is undefined.
Contents |
Helper variable template
template< class Base, class Derived > constexpr bool is_base_of_v = is_base_of<Base, Derived>::value; |
(since C++17) | |
Inherited from std::integral_constant
Member constants
value [static] |
true if Derived is derived from Base or if both are the same non-union class (in both cases ignoring cv-qualification), false otherwise (public static member constant) |
Member functions
operator bool |
converts the object to bool, returns value (public member function) |
operator() (C++14) |
returns value (public member function) |
Member types
Type | Definition |
value_type
|
bool |
type
|
std::integral_constant<bool, value> |
Notes
std::is_base_of<A, B>::value is true even if A
is a private, protected, or ambiguous base class of B
. In many situations, std::is_convertible<B*, A*> is the more appropriate test.
Although no class is its own base, std::is_base_of<T, T>::value is true because the intent of the trait is to model the "is-a" relationship, and T
is a T
. Despite that, std::is_base_of<int, int>::value is false because only classes participate in the relationship that this trait models.
Possible Implementation
namespace details { template<typename B> std::true_type test_ptr_conv(const volatile B*); template<typename> std::false_type test_ptr_conv(const volatile void*); template<typename B, typename D> auto test_is_base_of(int) -> decltype(test_ptr_conv<B>(static_cast<D*>(nullptr))); template<typename, typename> auto test_is_base_of(...) -> std::true_type; // private or ambiguous base } template<typename Base, typename Derived> struct is_base_of : std::integral_constant< bool, std::is_class<Base>::value && std::is_class<Derived>::value && decltype(details::test_is_base_of<Base, Derived>(0))::value > {}; |
Example
#include <type_traits> class A {}; class B : A {}; class C : B {}; class D {}; union E {}; using I = int; static_assert ( std::is_base_of_v<A, A> == true && std::is_base_of_v<A, B> == true && std::is_base_of_v<A, C> == true && std::is_base_of_v<A, D> != true && std::is_base_of_v<B, A> != true && std::is_base_of_v<E, E> != true && std::is_base_of_v<I, I> != true ); int main() {}
Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 2015 | C++11 | the behavior might be undefined ifDerived is an incomplete union type
|
the base characteristic is std::false_type in this case |
See also
(C++26) |
checks if a type is a virtual base of the other type (class template) |
(C++11)(C++20) |
checks if a type can be converted to the other type (class template) |
(C++20) |
specifies that a type is derived from another type (concept) |