Difference between revisions of "cpp/algorithm/inner product"
Andreas Krug (Talk | contribs) m (Headers sorted, fmt) |
Andreas Krug (Talk | contribs) m (9 spaces -> 8 spaces) |
||
Line 62: | Line 62: | ||
while (first1 != last1) | while (first1 != last1) | ||
{ | { | ||
− | + | init = std::move(init) + (*first1) * (*first2); // std::move since C++11 | |
− | + | ++first1; | |
− | + | ++first2; | |
} | } | ||
Line 80: | Line 80: | ||
while (first1 != last1) | while (first1 != last1) | ||
{ | { | ||
− | + | init = op1(std::move(init), op2(*first1, *first2)); // std::move since C++11 | |
− | + | ++first1; | |
− | + | ++first2; | |
} | } | ||
Revision as of 23:21, 6 April 2023
Defined in header <numeric>
|
||
(1) | ||
template< class InputIt1, class InputIt2, class T > T inner_product( InputIt1 first1, InputIt1 last1, InputIt2 first2, T init ); |
(until C++20) | |
template< class InputIt1, class InputIt2, class T > constexpr T inner_product( InputIt1 first1, InputIt1 last1, |
(since C++20) | |
(2) | ||
template< class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2 > |
(until C++20) | |
template< class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2 > |
(since C++20) | |
Computes inner product (i.e. sum of products) or performs ordered map/reduce operation on the range [
first1,
last1)
and the range beginning at first2.
T
) with the initial value init and then
modifies it with the expression acc = acc + (*i1) * (*i2)(until C++11)acc = std::move(acc) + (*i1) * (*i2)(since C++11) for every iterator i1 in the range [
first1,
last1)
in order and its corresponding iterator i2 in the range beginning at first2. For built-in meaning of + and *, this computes inner product of the two ranges.T
) with the initial value init and then
modifies it with the expression acc = op1(acc, op2(*i1, *i2))(until C++11)acc = op1(std::move(acc), op2(*i1, *i2))(since C++11) for every iterator i1 in the range [
first1,
last1)
in order and its corresponding iterator i2 in the range beginning at first2.If op1 or op2 invalidates any iterators (including the end iterators) or modify any elements of the range involved, the behavior is undefined.
Contents |
Parameters
first1, last1 | - | the first range of elements |
first2 | - | the beginning of the second range of elements |
init | - | initial value of the sum of the products |
op1 | - | binary operation function object that will be applied. This "sum" function takes a value returned by op2 and the current value of the accumulator and produces a new value to be stored in the accumulator. The signature of the function should be equivalent to the following: Ret fun(const Type1 &a, const Type2 &b); The signature does not need to have const &. |
op2 | - | binary operation function object that will be applied. This "product" function takes one value from each range and produces a new value. The signature of the function should be equivalent to the following: Ret fun(const Type1 &a, const Type2 &b); The signature does not need to have const &. |
Type requirements | ||
-InputIt1, InputIt2 must meet the requirements of LegacyInputIterator.
| ||
-ForwardIt1, ForwardIt2 must meet the requirements of LegacyForwardIterator.
| ||
-T must meet the requirements of CopyAssignable and CopyConstructible.
|
Return value
acc after all modifications.
Possible implementation
inner_product (1) |
---|
template<class InputIt1, class InputIt2, class T> constexpr // since C++20 T inner_product(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init) { while (first1 != last1) { init = std::move(init) + (*first1) * (*first2); // std::move since C++11 ++first1; ++first2; } return init; } |
inner_product (2) |
template<class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2> constexpr // since C++20 T inner_product(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 op1 BinaryOperation2 op2) { while (first1 != last1) { init = op1(std::move(init), op2(*first1, *first2)); // std::move since C++11 ++first1; ++first2; } return init; } |
Notes
The parallelizable version of this algorithm, std::transform_reduce, requires op1 and op2 to be commutative and associative, but std::inner_product
makes no such requirement, and always performs the operations in the order given.
Example
#include <functional> #include <iostream> #include <numeric> #include <vector> int main() { std::vector<int> a {0, 1, 2, 3, 4}; std::vector<int> b {5, 4, 2, 3, 1}; int r1 = std::inner_product(a.begin(), a.end(), b.begin(), 0); std::cout << "Inner product of a and b: " << r1 << '\n'; int r2 = std::inner_product(a.begin(), a.end(), b.begin(), 0, std::plus<>(), std::equal_to<>()); std::cout << "Number of pairwise matches between a and b: " << r2 << '\n'; }
Output:
Inner product of a and b: 21 Number of pairwise matches between a and b: 2
Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 242 | C++98 | op1 and op2 could not have side effects | they cannot modify the ranges involved |
LWG 2055 (P0616R0) |
C++11 | acc was not moved while being accumulated | it is moved |
See also
(C++17) |
applies an invocable, then reduces out of order (function template) |
sums up or folds a range of elements (function template) | |
computes the partial sum of a range of elements (function template) |