std::erf, std::erff, std::erfl
From cppreference.com
Defined in header <cmath>
|
||
float erf ( float arg ); float erff( float arg ); |
(1) | (since C++11) |
double erf ( double arg ); |
(2) | (since C++11) |
long double erf ( long double arg ); long double erfl( long double arg ); |
(3) | (since C++11) |
double erf ( IntegralType arg ); |
(4) | (since C++11) |
4) A set of overloads or a function template accepting an argument of any integral type. Equivalent to (2) (the argument is cast to double).
Contents |
Parameters
arg | - | value of a floating-point or integral type |
Return value
If no errors occur, value of the error function ofarg
, that is 2 |
√π |
2*arg |
√π |
Error handling
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is ±0, ±0 is returned
- If the argument is ±∞, ±1 is returned
- If the argument is NaN, NaN is returned
Notes
Underflow is guaranteed if |arg| < DBL_MIN*(sqrt(π)/2)
erf(x |
σ√2 |
Example
The following example calculates the probability that a normal variate is on the interval (x1, x2)
Run this code
#include <cmath> #include <iomanip> #include <iostream> double phi(double x1, double x2) { return (std::erf(x2 / std::sqrt(2)) - std::erf(x1 / std::sqrt(2))) / 2; } int main() { std::cout << "normal variate probabilities:\n" << std::fixed << std::setprecision(2); for (int n=-4; n < 4; ++n) std::cout << "[" << std::setw(2) << n << ":" << std::setw(2) << n+1 << "]: " << std::setw(5) << 100 * phi(n, n + 1) << "%\n"; std::cout << "special values:\n" << "erf(-0) = " << std::erf(-0.0) << '\n' << "erf(Inf) = " << std::erf(INFINITY) << '\n'; }
Output:
normal variate probabilities: [-4:-3]: 0.13% [-3:-2]: 2.14% [-2:-1]: 13.59% [-1: 0]: 34.13% [ 0: 1]: 34.13% [ 1: 2]: 13.59% [ 2: 3]: 2.14% [ 3: 4]: 0.13% special values: erf(-0) = -0.00 erf(Inf) = 1.00
See also
(C++11)(C++11)(C++11) |
complementary error function (function) |
C documentation for erf
|
External links
Weisstein, Eric W. "Erf." From MathWorld — A Wolfram Web Resource. |