std::log(std::complex)
Defined in header <complex>
|
||
template< class T > std::complex<T> log( const std::complex<T>& z ); |
||
Computes complex natural (base e) logarithm of a complex value z with a branch cut along the negative real axis.
Contents |
[edit] Parameters
z | - | complex value |
[edit] Return value
If no errors occur, the complex natural logarithm of z is returned, in the range of a strip in the interval [−iπ, +iπ] along the imaginary axis and mathematically unbounded along the real axis.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
- The function is continuous onto the branch cut taking into account the sign of imaginary part
- std::log(std::conj(z)) == std::conj(std::log(z))
- If z is
(-0,+0)
, the result is(-∞,π)
and FE_DIVBYZERO is raised - If z is
(+0,+0)
, the result is(-∞,+0)
and FE_DIVBYZERO is raised - If z is
(x,+∞)
(for any finite x), the result is(+∞,π/2)
- If z is
(x,NaN)
(for any finite x), the result is(NaN,NaN)
and FE_INVALID may be raised - If z is
(-∞,y)
(for any finite positive y), the result is(+∞,π)
- If z is
(+∞,y)
(for any finite positive y), the result is(+∞,+0)
- If z is
(-∞,+∞)
, the result is(+∞,3π/4)
- If z is
(+∞,+∞)
, the result is(+∞,π/4)
- If z is
(±∞,NaN)
, the result is(+∞,NaN)
- If z is
(NaN,y)
(for any finite y), the result is(NaN,NaN)
and FE_INVALID may be raised - If z is
(NaN,+∞)
, the result is(+∞,NaN)
- If z is
(NaN,NaN)
, the result is(NaN,NaN)
[edit] Notes
The natural logarithm of a complex number z with polar coordinate components (r,θ) equals ln r + i(θ+2nπ), with the principal value ln r + iθ.
The semantics of this function are intended to be consistent with the C function clog.
[edit] Example
#include <cmath> #include <complex> #include <iostream> int main() { std::complex<double> z {0.0, 1.0}; // r = 1, θ = pi / 2 std::cout << "2 * log" << z << " = " << 2.0 * std::log(z) << '\n'; std::complex<double> z2 {sqrt(2.0) / 2, sqrt(2.0) / 2}; // r = 1, θ = pi / 4 std::cout << "4 * log" << z2 << " = " << 4.0 * std::log(z2) << '\n'; std::complex<double> z3 {-1.0, 0.0}; // r = 1, θ = pi std::cout << "log" << z3 << " = " << std::log(z3) << '\n'; std::complex<double> z4 {-1.0, -0.0}; // the other side of the cut std::cout << "log" << z4 << " (the other side of the cut) = " << std::log(z4) << '\n'; }
Possible output:
2 * log(0,1) = (0,3.14159) 4 * log(0.707107,0.707107) = (0,3.14159) log(-1,0) = (0,3.14159) log(-1,-0) (the other side of the cut) = (0,-3.14159)
[edit] Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 2597 | C++98 | specification mishandles signed zero imaginary parts | erroneous requirement removed |
[edit] See also
complex common logarithm with the branch cuts along the negative real axis (function template) | |
complex base e exponential (function template) | |
(C++11)(C++11) |
computes natural (base e) logarithm (ln(x)) (function) |
applies the function std::log to each element of valarray (function template) | |
C documentation for clog
|