std::cosh(std::complex)
From cppreference.com
Defined in header <complex>
|
||
template< class T > complex<T> cosh( const complex<T>& z ); |
(since C++11) | |
Computes complex hyperbolic cosine of a complex value z.
Contents |
[edit] Parameters
z | - | complex value |
[edit] Return value
If no errors occur, complex hyperbolic cosine of z is returned.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
- std::cosh(std::conj(z)) == std::conj(std::cosh(z))
- std::cosh(z) == std::cosh(-z)
- If z is
(+0,+0)
, the result is(1,+0)
- If z is
(+0,+∞)
, the result is(NaN,±0)
(the sign of the imaginary part is unspecified) and FE_INVALID is raised - If z is
(+0,NaN)
, the result is(NaN,±0)
(the sign of the imaginary part is unspecified) - If z is
(x,+∞)
(for any finite non-zero x), the result is(NaN,NaN)
and FE_INVALID is raised - If z is
(x,NaN)
(for any finite non-zero x), the result is(NaN,NaN)
and FE_INVALID may be raised - If z is
(+∞,+0)
, the result is(+∞,+0)
- If z is
(+∞,y)
(for any finite non-zero y), the result is+∞cis(y)
- If z is
(+∞,+∞)
, the result is(±∞,NaN)
(the sign of the real part is unspecified) and FE_INVALID is raised - If z is
(+∞,NaN)
, the result is(+∞,NaN)
- If z is
(NaN,+0)
, the result is(NaN,±0)
(the sign of the imaginary part is unspecified) - If z is
(NaN,+y)
(for any finite non-zero y), the result is(NaN,NaN)
and FE_INVALID may be raised - If z is
(NaN,NaN)
, the result is(NaN,NaN)
where cis(y) is cos(y) + i sin(y).
[edit] Notes
Mathematical definition of hyperbolic cosine is cosh z =ez+e-z |
2 |
Hyperbolic cosine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2πi.
[edit] Examples
Run this code
#include <cmath> #include <complex> #include <iostream> int main() { std::cout << std::fixed; std::complex<double> z(1.0, 0.0); // behaves like real cosh along the real line std::cout << "cosh" << z << " = " << std::cosh(z) << " (cosh(1) = " << std::cosh(1) << ")\n"; std::complex<double> z2(0.0, 1.0); // behaves like real cosine along the imaginary line std::cout << "cosh" << z2 << " = " << std::cosh(z2) << " ( cos(1) = " << std::cos(1) << ")\n"; }
Output:
cosh(1.000000,0.000000) = (1.543081,0.000000) (cosh(1) = 1.543081) cosh(0.000000,1.000000) = (0.540302,0.000000) ( cos(1) = 0.540302)
[edit] See also
computes hyperbolic sine of a complex number (sinh(z)) (function template) | |
computes hyperbolic tangent of a complex number (tanh(z)) (function template) | |
(C++11) |
computes area hyperbolic cosine of a complex number (arcosh(z)) (function template) |
(C++11)(C++11) |
computes hyperbolic cosine (cosh(x)) (function) |
applies the function std::cosh to each element of valarray (function template) | |
C documentation for ccosh
|