std::erfc
From cppreference.com
Defined in header <cmath>
|
||
float erfc( float arg ); |
(since C++11) | |
double erfc( double arg ); |
(since C++11) | |
long double erfc( long double arg ); |
(since C++11) | |
double erfc( Integral arg ); |
(since C++11) | |
1-3) Computes the complementary error function of
arg
, that is 1.0-erf(arg)
, but without loss of precision for large arg
4) A set of overloads or a function template accepting an argument of any integral type. Equivalent to 2) (the argument is cast to double).
Contents |
Parameters
arg | - | value of a floating-point or Integral type |
Return value
If no errors occur, value of the complementary error function ofarg
, that is 2 |
√π |
If a range error occurs due to underflow, the correct result (after rounding) is returned
Error handling
Errors are reported as specified in math_errhandling
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is +∞, +0 is returned
- If the argument is -∞, 2 is returned
- If the argument is NaN, NaN is returned
Notes
For the IEEE-compatible type double
, underflow is guaranteed if arg
> 26.55.
Example
Run this code
#include <iostream> #include <cmath> #include <iomanip> double normalCDF(double x) // Phi(-∞, x) aka N(x) { return std::erfc(-x*std::sqrt(2))/2; } int main() { std::cout << "normal cumulative distribution function:\n" << std::fixed << std::setprecision(2); for(double n=0; n<1; n+=0.1) std::cout << "normalCDF(" << n << ") " << 100*normalCDF(n) << "%\n"; std::cout << "special values:\n" << "erfc(-Inf) = " << std::erfc(-INFINITY) << '\n' << "erfc(Inf) = " << std::erfc(INFINITY) << '\n'; }
Output:
normal cumulative distribution function: normalCDF(0.00) 50.00% normalCDF(0.10) 57.93% normalCDF(0.20) 65.54% normalCDF(0.30) 72.57% normalCDF(0.40) 78.81% normalCDF(0.50) 84.13% normalCDF(0.60) 88.49% normalCDF(0.70) 91.92% normalCDF(0.80) 94.52% normalCDF(0.90) 96.41% normalCDF(1.00) 97.72% special values: erfc(-Inf) = 2.00 erfc(Inf) = 0.00
See also
(C++11)(C++11)(C++11) |
error function (function) |
C documentation for erfc
|
External links
Weisstein, Eric W. "Erfc." From MathWorld--A Wolfram Web Resource.