std::inner_product
Defined in header <numeric>
|
||
template< class InputIt1, class InputIt2, class T > T inner_product( InputIt1 first1, InputIt1 last1, |
(1) | |
template<class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2> |
(3) | |
Computes inner product (i.e. sum of products) or performs ordered map/reduce operation on the range [first1, last1)
and the range beginning at first2
.
acc
with the initial value init
and then modifies it with the expression acc = acc + *first1 * *first2, then modifies again with the expression acc = acc + *(first1+1) * *(first2+1), etc until reaching end1
. For built-in meaning of + and *, this computes inner product of the two ranges.acc
with the initial value init
and then modifies it with the expression acc = op1(acc, op2(*first1, *first2)), then modifies again with the expression acc = op1(acc, op2(*(first1+1), *(first2+1))), etc until reaching end1
.
|
(until C++11) |
|
(since C++11) |
Contents |
Parameters
first1, last1 | - | the first range of elements |
first2 | - | the beginning of the second range of elements |
value | - | initial value of the sum of the products |
op1 | - | binary operation function object that will be applied. This "sum" function takes a value returned by op2 and the current value of the accumulator and produces a new value to be stored in the accumulator. The signature of the function should be equivalent to the following: Ret fun(const Type1 &a, const Type2 &b); The signature does not need to have const &. |
op2 | - | binary operation function object that will be applied. This "product" function takes one value from each range and produces a new value. The signature of the function should be equivalent to the following: Ret fun(const Type1 &a, const Type2 &b); The signature does not need to have const &. |
Type requirements
Template:par req concept Template:par req concept Template:par req concept |
Return value
The final value of acc
as described above.
Possible implementation
First version |
---|
template<class InputIt1, class InputIt2, class T> T inner_product(InputIt1 first1, InputIt1 last1, InputIt2 first2, T value) { while (first1 != last1) { value = value + *first1 * *first2; ++first1; ++first2; } return value; } |
Second version |
template<class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2> T inner_product(InputIt1 first1, InputIt1 last1, InputIt2 first2, T value, BinaryOperation1 op1 BinaryOperation2 op2) { while (first1 != last1) { value = op1(value, op2(*first1, *first2)); ++first1; ++first2; } return value; } |
Notes
The parallelizable version of this algorithm, std::transform_reduce, requires op1
and op2
to be commutative and associative, but std::inner_product
makes no such requirement, and always performs the operations in the order given.
Example
#include <numeric> #include <iostream> #include <vector> #include <functional> int main() { std::vector<int> a{0, 1, 2, 3, 4}; std::vector<int> b{5, 4, 2, 3, 1}; int r1 = std::inner_product(a.begin(), a.end(), b.begin(), 0); std::cout << "Inner product of a and b: " << r1 << '\n'; int r2 = std::inner_product(a.begin(), a.end(), b.begin(), 0, std::plus<>(), std::equal_to<>()); std::cout << "Number of pairwise matches between a and b: " << r2 << '\n'; }
Output:
Inner product of a and b: 21 Number of pairwise matches between a and b: 2
See also
(C++17) |
applies an invocable, then reduces out of order (function template) |
sums up or folds a range of elements (function template) | |
computes the partial sum of a range of elements (function template) |