std::partial_sort
Defined in header <algorithm>
|
||
(1) | ||
template< class RandomIt > void partial_sort( RandomIt first, RandomIt middle, RandomIt last ); |
(until C++20) | |
template< class RandomIt > constexpr void partial_sort( RandomIt first, RandomIt middle, RandomIt last ); |
(since C++20) | |
template< class ExecutionPolicy, class RandomIt > void partial_sort( ExecutionPolicy&& policy, |
(2) | (since C++17) |
(3) | ||
template< class RandomIt, class Compare > void partial_sort( RandomIt first, RandomIt middle, RandomIt last, |
(until C++20) | |
template< class RandomIt, class Compare > constexpr void partial_sort( RandomIt first, RandomIt middle, RandomIt last, |
(since C++20) | |
template< class ExecutionPolicy, class RandomIt, class Compare > void partial_sort( ExecutionPolicy&& policy, |
(4) | (since C++17) |
Rearranges elements such that the range [first, middle)
contains the sorted middle - first
smallest elements in the range [first, last)
.
The order of equal elements is not guaranteed to be preserved. The order of the remaining elements in the range [middle, last)
is unspecified.
operator<
.comp
.policy
. These overloads do not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is trueContents |
Parameters
first, last | - | random access iterators defining the range |
middle | - | random access iterator defining the last element to be sorted |
policy | - | the execution policy to use. See execution policy for details. |
comp | - | comparison function object (i.e. an object that satisfies the requirements of Compare) which returns true if the first argument is less than (i.e. is ordered before) the second. The signature of the comparison function should be equivalent to the following: bool cmp(const Type1& a, const Type2& b); While the signature does not need to have const&, the function must not modify the objects passed to it and must be able to accept all values of type (possibly const) |
Type requirements | ||
-RandomIt must meet the requirements of ValueSwappable and LegacyRandomAccessIterator.
| ||
-The type of dereferenced RandomIt must meet the requirements of MoveAssignable and MoveConstructible.
|
Return value
(none)
Complexity
Approximately (last-first)log(middle-first) applications of cmp
Exceptions
The overloads with a template parameter named ExecutionPolicy
report errors as follows:
- If execution of a function invoked as part of the algorithm throws an exception and
ExecutionPolicy
is one of the standard policies, std::terminate is called. For any otherExecutionPolicy
, the behavior is implementation-defined. - If the algorithm fails to allocate memory, std::bad_alloc is thrown.
Possible implementation
See also the implementations in libstdc++ and libc++.
Example
#include <algorithm> #include <functional> #include <array> #include <iostream> int main() { std::array<int, 10> s{5, 7, 4, 2, 8, 6, 1, 9, 0, 3}; std::partial_sort(s.begin(), s.begin() + 3, s.end()); for (int a : s) { std::cout << a << " "; } }
Possible output:
0 1 2 7 8 6 5 9 4 3
See also
partially sorts the given range making sure that it is partitioned by the given element (function template) | |
copies and partially sorts a range of elements (function template) | |
sorts a range of elements while preserving order between equal elements (function template) | |
sorts a range into ascending order (function template) |