Namespaces
Variants
Views
Actions

std::min_element

From cppreference.com
< cpp‎ | algorithm
Revision as of 02:19, 12 September 2013 by 95.153.173.188 (Talk)

 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
min_element

Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Defined in header <algorithm>
template< class ForwardIt >
ForwardIt min_element( ForwardIt first, ForwardIt last );
(1)
template< class ForwardIt, class Compare >
ForwardIt min_element( ForwardIt first, ForwardIt last, Compare comp );
(2)

Finds the smallest element in the range [first, last). The first version uses operator< to compare the values, the second version uses the given comparison function comp.

Contents

Parameters

first, last - forward iterators defining the range to examine
cmp - comparison function object (i.e. an object that satisfies the requirements of Compare) which returns true if a is less than b.

The signature of the comparison function should be equivalent to the following:

bool cmp(const Type1& a, const Type2& b);

While the signature does not need to have const&, the function must not modify the objects passed to it and must be able to accept all values of type (possibly const) Type1 and Type2 regardless of value category (thus, Type1& is not allowed, nor is Type1 unless for Type1 a move is equivalent to a copy(since C++11)).
The types Type1 and Type2 must be such that an object of type ForwardIt can be dereferenced and then implicitly converted to both of them.

Type requirements

Template:par req concept

Return value

Iterator to the smallest element in the range [first, last). If several elements in the range are equivalent to the smallest element, returns the iterator to the first such element. Returns last if the range is empty.

Complexity

Exactly max(N-1,0) comparisons, where N = std::distance(first, last).

Possible implementation

First version
template<class ForwardIt>
ForwardIt min_element(ForwardIt first, ForwardIt last)
{
    if (first == last) return last;
 
    ForwardIt smallest = first;
    ++first;
    for (; first != last; ++first) {
        if (*first < *smallest) {
            smallest = first;
        }
    }
    return smallest;
}
Second version
template<class ForwardIt, class Compare>
ForwardIt min_element(ForwardIt first, ForwardIt last, 
                            Compare comp)
{
    if (first == last) return last;
 
    ForwardIt smallest = first;
    ++first;
    for (; first != last; ++first) {
        if (comp(*first, *smallest)) {
            smallest = first;
        }
    }
    return smallest;
}

Example

#include <algorithm>
#include <iostream>
#include <vector>
 
int main()
{
    std::vector<int> v{3, 1, 4, 1, 5, 9};
 
    std::vector<int>::iterator result = std::min_element(std::begin(v), std::end(v));
    std::cout << "min element at: " << std::distance(std::begin(v), result);
}

Output:

min element at: 1

See also

returns the largest element in a range
(function template) [edit]
returns the smallest and the largest elements in a range
(function template) [edit]
returns the smaller of the given values
(function template) [edit]