Difference between revisions of "cpp/algorithm/ranges/minmax"
m (move namespace... upper to cover all use cases) |
m (mention ub on empty range) |
||
Line 50: | Line 50: | ||
@1@ {{c|{b, a}}} if, according to their respective projections, {{tt|b}} is smaller than {{tt|a}}; otherwise it returns {{c|{a, b}}}. | @1@ {{c|{b, a}}} if, according to their respective projections, {{tt|b}} is smaller than {{tt|a}}; otherwise it returns {{c|{a, b}}}. | ||
− | @2-3@ {{c|{s, l}}}, where {{tt|s}} and {{tt|l}} are respectively the smallest and largest values in {{tt|r}}, according to their respective projections. If several values are equivalent to the smallest and largest, returns the leftmost smallest value, and the rightmost largest value. | + | @2-3@ {{c|{s, l}}}, where {{tt|s}} and {{tt|l}} are respectively the smallest and largest values in {{tt|r}}, according to their respective projections. If several values are equivalent to the smallest and largest, returns the leftmost smallest value, and the rightmost largest value. If the range is empty (as determined by {{c|ranges::distance(r)}}), the behavior is undefined. |
===Complexity=== | ===Complexity=== |
Revision as of 05:13, 30 July 2020
Defined in header <algorithm>
|
||
template< class T, class Proj = std::identity, std::indirect_strict_weak_order< |
(1) | (since C++20) |
template< class T, class Proj = std::identity, std::indirect_strict_weak_order< |
(2) | (since C++20) |
template< ranges::input_range R, class Proj = std::identity, std::indirect_strict_weak_order< |
(3) | (since C++20) |
template< class T > using ranges::minmax_result = min_max_result<T>; |
(4) | (since C++20) |
Returns the smaller of the given projected values.
a
and b
.r
.r
.The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Contents |
Parameters
a, b | - | the values to compare |
r | - | a non-empty range of values to compare |
comp | - | comparison to apply to the projected elements |
proj | - | projection to apply to the elements |
Return value
b
is smaller than a
; otherwise it returns {a, b}.s
and l
are respectively the smallest and largest values in r
, according to their respective projections. If several values are equivalent to the smallest and largest, returns the leftmost smallest value, and the rightmost largest value. If the range is empty (as determined by ranges::distance(r)), the behavior is undefined.Complexity
3 / 2 * ranges::distance(r)
comparisons and twice as many applications of the projectionPossible implementation
struct minmax_fn { template<class T, class Proj = std::identity, std::indirect_strict_weak_order< std::projected<const T*, Proj>> Comp = ranges::less> constexpr ranges::minmax_result<const T&> operator()( const T& a, const T& b, Comp comp = {}, Proj proj = {}) const { if (std::invoke(comp, std::invoke(proj, b), std::invoke(proj, a))) { return {b, a}; } return {a, b}; } template<class T, class Proj = std::identity, std::indirect_strict_weak_order< std::projected<const T*, Proj>> Comp = ranges::less> constexpr ranges::minmax_result<const T&> operator()( std::initializer_list<T> r, Comp comp = {}, Proj proj = {}) const { auto result = ranges::minmax_element(r, std::ref(comp), std::ref(proj)); return {std::move(*result.min), std::move(*result.max)}; } template<ranges::input_range R, class Proj = std::identity, std::indirect_strict_weak_order< std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less> requires std::indirectly_copyable_storable<ranges::iterator_t<R>, ranges::range_value_t<R>*> constexpr ranges::minmax_result<ranges::range_value_t<R>> operator()( R&& r, Comp comp = {}, Proj proj = {}) const { auto result = ranges::minmax_element(r, std::ref(comp), std::ref(proj)); return {std::move(*result.min), std::move(*result.max)}; } }; inline constexpr minmax_fn minmax; |
Notes
For overloads (1,2), if one of the parameters is an rvalue, the reference returned becomes a dangling reference at the end of the full expression that contains the call to minmax
:
int n = 1; auto p = ranges::minmax(n, n+1); int m = p.first; // ok int x = p.second; // undefined behavior
Example
#include <algorithm> #include <iostream> #include <random> #include <vector> int main() { std::vector<int> v{3, 1, 4, 9, 1, 5, 9, 2, 6}; std::mt19937_64 generator; namespace ranges = std::ranges; std::uniform_int_distribution<> distribution(0, ranges::distance(v)); auto bounds = ranges::minmax(distribution(generator), distribution(generator)); std::cout << "v[" << bounds.min << ":" << bounds.max << "]: "; for (int i = bounds.min; i < bounds.max; ++i) { std::cout << v[i] << ' '; } std::cout << '\n'; auto [min, max] = ranges::minmax(v); std::cout << "smallest: " << min << '\n' << "largest: " << max << '\n'; }
Possible output:
v[2:7]: 4 9 1 5 9 smallest: 1 largest: 9
See also
(C++20) |
returns the smaller of the given values (niebloid) |
(C++20) |
returns the greater of the given values (niebloid) |
ranges::minmax (C++20) |
returns the smaller and larger of two elements (niebloid) |
(C++20) |
returns the smallest and the largest elements in a range (niebloid) |
(C++20) |
clamps a value between a pair of boundary values (niebloid) |
(C++11) |
returns the smaller and larger of two elements (function template) |