Difference between revisions of "cpp/algorithm/ranges/fold left with iter"
m (FTM.) |
|||
Line 126: | Line 126: | ||
{{ftm begin}} | {{ftm begin}} | ||
{{ftm|__cpp_lib_ranges_fold|std=C++23|value=202207L|{{tt|std::ranges}} [[cpp/algorithm/ranges#Constrained fold operations|fold algorithms]]}} | {{ftm|__cpp_lib_ranges_fold|std=C++23|value=202207L|{{tt|std::ranges}} [[cpp/algorithm/ranges#Constrained fold operations|fold algorithms]]}} | ||
− | {{ftm| | + | {{ftm|__cpp_lib_algorithm_default_value_type|value=202403|std=C++26|[[cpp/language/list initialization|List-initialization]] for algorithms {{vl|1,2}}}} |
{{ftm end}} | {{ftm end}} | ||
Line 170: | Line 170: | ||
using CD = std::complex<double>; | using CD = std::complex<double>; | ||
std::vector<CD> nums{<!---->{1, 1}, {2, 0}, {3, 0}<!---->}; | std::vector<CD> nums{<!---->{1, 1}, {2, 0}, {3, 0}<!---->}; | ||
− | #ifdef | + | #ifdef __cpp_lib_algorithm_default_value_type |
auto res = ranges::fold_left_with_iter(nums, {7, 0}, std::multiplies{}); | auto res = ranges::fold_left_with_iter(nums, {7, 0}, std::multiplies{}); | ||
#else | #else |
Revision as of 22:36, 20 May 2024
Defined in header <algorithm>
|
||
Call signature |
||
(1) | ||
template< std::input_iterator I, std::sentinel_for<I> S, class T, /* indirectly-binary-left-foldable */<T, I> F > |
(since C++23) (until C++26) |
|
template< std::input_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, |
(since C++26) | |
(2) | ||
template< ranges::input_range R, class T, /* indirectly-binary-left-foldable */ |
(since C++23) (until C++26) |
|
template< ranges::input_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-left-foldable */ |
(since C++26) | |
Helper concepts |
||
template< class F, class T, class I > concept /* indirectly-binary-left-foldable */ = /* see description */; |
(3) | (exposition only*) |
Helper class template |
||
template< class I, class T > using fold_left_with_iter_result = ranges::in_value_result<I, T>; |
(4) | (since C++23) |
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(init, x1), x2), ...), xn)
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_left_with_iter
behaves like std::accumulate's overload that accepts a binary predicate.
The behavior is undefined if [
first,
last)
is not a valid range.
[
first,
last)
. Helper concepts |
||
template< class F, class T, class I, class U > concept /*indirectly-binary-left-foldable-impl*/ = |
(3A) | (exposition only*) |
template< class F, class T, class I > concept /*indirectly-binary-left-foldable*/ = |
(3B) | (exposition only*) |
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Contents |
Parameters
first, last | - | the range of elements to fold |
r | - | the range of elements to fold |
init | - | the initial value of the fold |
f | - | the binary function object |
Return value
Let U be std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>.
- The member ranges::in_value_result::in holds an iterator to the end of the range.
- The member ranges::in_value_result::value holds the result of the left-fold of given range over f.
Possible implementations
class fold_left_with_iter_fn { template<class O, class I, class S, class T, class F> constexpr auto impl(I&& first, S&& last, T&& init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>; using Ret = ranges::fold_left_with_iter_result<O, U>; if (first == last) return Ret{std::move(first), U(std::move(init))}; U accum = std::invoke(f, std::move(init), *first); for (++first; first != last; ++first) accum = std::invoke(f, std::move(accum), *first); return Ret{std::move(first), std::move(accum)}; } public: template<std::input_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, /* indirectly-binary-left-foldable */<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { return impl<I>(std::move(first), std::move(last), std::move(init), std::ref(f)); } template<ranges::input_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-left-foldable */<T, ranges::iterator_t<R>> F> constexpr auto operator()(R&& r, T init, F f) const { return impl<ranges::borrowed_iterator_t<R>> ( ranges::begin(r), ranges::end(r), std::move(init), std::ref(f) ); } }; inline constexpr fold_left_with_iter_fn fold_left_with_iter; |
Complexity
Exactly ranges::distance(first, last) applications of the function object f.
Notes
The following table compares all constrained folding algorithms:
Fold function template | Starts from | Initial value | Return type |
---|---|---|---|
ranges::fold_left | left | init | U |
ranges::fold_left_first | left | first element | std::optional<U> |
ranges::fold_right | right | init | U |
ranges::fold_right_last | right | last element | std::optional<U> |
ranges::fold_left_with_iter | left | init |
(1) ranges::in_value_result<I, U> (2) ranges::in_value_result<BR, U>, where BR is ranges::borrowed_iterator_t<R> |
ranges::fold_left_first_with_iter | left | first element |
(1) ranges::in_value_result<I, std::optional<U>> (2) ranges::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R> |
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_ranges_fold |
202207L | (C++23) | std::ranges fold algorithms
|
__cpp_lib_algorithm_default_value_type |
202403 | (C++26) | List-initialization for algorithms (1,2) |
Example
#include <algorithm> #include <cassert> #include <complex> #include <functional> #include <ranges> #include <utility> #include <vector> int main() { namespace ranges = std::ranges; std::vector v{1, 2, 3, 4, 5, 6, 7, 8}; auto sum = ranges::fold_left_with_iter(v.begin(), v.end(), 6, std::plus<int>()); assert(sum.value == 42); assert(sum.in == v.end()); auto mul = ranges::fold_left_with_iter(v, 0X69, std::multiplies<int>()); assert(mul.value == 4233600); assert(mul.in == v.end()); // Get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; auto sec = ranges::fold_left_with_iter ( data | ranges::views::values, 2.0f, std::multiplies<>() ); assert(sec.value == 42); // Use a program defined function object (lambda-expression): auto lambda = [](int x, int y){ return x + 0B110 + y; }; auto val = ranges::fold_left_with_iter(v, -42, lambda); assert(val.value == 42); assert(val.in == v.end()); using CD = std::complex<double>; std::vector<CD> nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto res = ranges::fold_left_with_iter(nums, {7, 0}, std::multiplies{}); #else auto res = ranges::fold_left_with_iter(nums, CD{7, 0}, std::multiplies{}); #endif assert((res.value == CD{42, 42})); }
References
- C++23 standard (ISO/IEC 14882:2024):
- 27.6.18 Fold [alg.fold]
See also
(C++23) |
left-folds a range of elements (niebloid) |
(C++23) |
left-folds a range of elements using the first element as an initial value (niebloid) |
(C++23) |
right-folds a range of elements (niebloid) |
(C++23) |
right-folds a range of elements using the last element as an initial value (niebloid) |
left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional) (niebloid) | |
sums up or folds a range of elements (function template) | |
(C++17) |
similar to std::accumulate, except out of order (function template) |