std::ranges::fold_right
Defined in header <algorithm>
|
||
Call signature |
||
(1) | ||
template< std::bidirectional_iterator I, std::sentinel_for<I> S, class T, /* indirectly-binary-right-foldable */<T, I> F > |
(since C++23) (until C++26) |
|
template< std::bidirectional_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, |
(since C++26) | |
(2) | ||
template< ranges::bidirectional_range R, class T, /* indirectly-binary-right-foldable */ |
(since C++23) (until C++26) |
|
template< ranges::bidirectional_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-right-foldable */ |
(since C++26) | |
Helper concepts |
||
template< class F, class T, class I > concept /* indirectly-binary-left-foldable */ = /* see description */; |
(3) | (exposition only*) |
template< class F, class T, class I > concept /* indirectly-binary-right-foldable */ = /* see description */; |
(4) | (exposition only*) |
Right-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(x1, f(x2, ...f(xn, init)))
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_right
behaves like std::fold_left(ranges::reverse(r), init, /* flipped */(f)).
The behavior is undefined if [
first,
last)
is not a valid range.
[
first,
last)
. Helper concepts |
||
template< class F, class T, class I, class U > concept /*indirectly-binary-left-foldable-impl*/ = |
(3A) | (exposition only*) |
template< class F, class T, class I > concept /*indirectly-binary-left-foldable*/ = |
(3B) | (exposition only*) |
Helper concepts |
||
template< class F, class T, class I > concept /*indirectly-binary-right-foldable*/ = |
(4A) | (exposition only*) |
Helper class templates |
||
template< class F > class /*flipped*/ |
(4B) | (exposition only*) |
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Contents |
Parameters
first, last | - | the range of elements to fold |
r | - | the range of elements to fold |
init | - | the initial value of the fold |
f | - | the binary function object |
Return value
An object of type U that contains the result of right-fold of the given range over f, where U is equivalent to std::decay_t<std::invoke_result_t<F&, std::iter_reference_t<I>, T>>;.
If the range is empty, U(std::move(init)) is returned.
Possible implementations
struct fold_right_fn { template<std::bidirectional_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, /* indirectly-binary-right-foldable */<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, std::iter_reference_t<I>, T>>; if (first == last) return U(std::move(init)); I tail = ranges::next(first, last); U accum = std::invoke(f, *--tail, std::move(init)); while (first != tail) accum = std::invoke(f, *--tail, std::move(accum)); return accum; } template<ranges::bidirectional_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-right-foldable */<T, ranges::iterator_t<R>> F> constexpr auto operator()(R&& r, T init, F f) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(init), std::ref(f)); } }; inline constexpr fold_right_fn fold_right; |
Complexity
Exactly ranges::distance(first, last) applications of the function object f.
Notes
The following table compares all constrained folding algorithms:
Fold function template | Starts from | Initial value | Return type |
---|---|---|---|
ranges::fold_left | left | init | U |
ranges::fold_left_first | left | first element | std::optional<U> |
ranges::fold_right | right | init | U |
ranges::fold_right_last | right | last element | std::optional<U> |
ranges::fold_left_with_iter | left | init |
(1) ranges::in_value_result<I, U> (2) ranges::in_value_result<BR, U>, where BR is ranges::borrowed_iterator_t<R> |
ranges::fold_left_first_with_iter | left | first element |
(1) ranges::in_value_result<I, std::optional<U>> (2) ranges::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R> |
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_ranges_fold |
202207L | (C++23) | std::ranges fold algorithms
|
__cpp_lib_algorithm_default_value_type |
202403L | (C++26) | List-initialization for algorithms (1,2) |
Example
#include <algorithm> #include <complex> #include <functional> #include <iostream> #include <ranges> #include <string> #include <utility> #include <vector> using namespace std::literals; namespace ranges = std::ranges; int main() { auto v = {1, 2, 3, 4, 5, 6, 7, 8}; std::vector<std::string> vs{"A", "B", "C", "D"}; auto r1 = ranges::fold_right(v.begin(), v.end(), 6, std::plus<>()); // (1) std::cout << "r1: " << r1 << '\n'; auto r2 = ranges::fold_right(vs, "!"s, std::plus<>()); // (2) std::cout << "r2: " << r2 << '\n'; // Use a program defined function object (lambda-expression): std::string r3 = ranges::fold_right ( v, "A", [](int x, std::string s) { return s + ':' + std::to_string(x); } ); std::cout << "r3: " << r3 << '\n'; // Get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data{{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; float r4 = ranges::fold_right ( data | ranges::views::values, 2.0f, std::multiplies<>() ); std::cout << "r4: " << r4 << '\n'; using CD = std::complex<double>; std::vector<CD> nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto r5 = ranges::fold_right(nums, {7, 0}, std::multiplies{}); #else auto r5 = ranges::fold_right(nums, CD{7, 0}, std::multiplies{}); #endif std::cout << "r5: " << r5 << '\n'; }
Output:
r1: 42 r2: ABCD! r3: A:8:7:6:5:4:3:2:1 r4: 42 r5: (42,42)
References
- C++23 standard (ISO/IEC 14882:2024):
- 27.6.18 Fold [alg.fold]
See also
(C++23) |
right-folds a range of elements using the last element as an initial value (niebloid) |
(C++23) |
left-folds a range of elements (niebloid) |
(C++23) |
left-folds a range of elements using the first element as an initial value (niebloid) |
(C++23) |
left-folds a range of elements, and returns a pair (iterator, value) (niebloid) |
left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional) (niebloid) | |
sums up or folds a range of elements (function template) | |
(C++17) |
similar to std::accumulate, except out of order (function template) |